Thursday, February 2, 2017

Potential Mesh Extender Use-Cases: Farms

I was talking with a colleague about our plans for the Mesh Extender in farming, and realised that I couldn't find anything written down about our thoughts in this space, so I am going to fix that right now.

While we had been thinking about it for a while, the need for something to improve the productivity and competitiveness of family farms in remote locations here in Australia was really bought home to us by Craig from the Evening Star Caravan Park in Charleville, Outback Queensland.

Craig pointed out the cycle of decline in many remote towns caused by the shift from family ownership of farms to corporatised farming.  Basically, family farms mean that there is an extra family in a community, with kids who need schooling, and more warm bodies who need health and other services.

Corporate farming tends to use less people, in order to maximise economic efficiencies. Unfortunately, this means that a town often loses a family or two in the process. Then there are less kids at the school, so the school might lose a teacher (and the teachers family).  Then the hospital (if they are lucky enough to have one) loses a nurse (and the nurses family), because the population has reduced, and so on.  At the same time, there are now less mouths to buy food from the local supermarket and stores, so they reduce the hours of their workers, which further reduces the money that they have to spend in the community and so on.  Basically, the loss of farming families causes a continual erosion of the viability of these communities.

However, it isn't easy to run a family farm, when faced by the economies of scale and other efficiencies that corporate farming is often able to harness, including the use of information technology to remotely manage their properties, which are often very large -- upto 10s of thousands of square kilometres (although in the past the largest such operation exceeded a staggering 220,000 square kilometres -- or about the size of the entire UK).

Basically, it is much cheaper, and therefore profitable, if you are able to manage your property from a network operations centre or station homestead, instead of having to drive potentially hundreds of kilometres over rough station tracks.  However, the communications solutions currently on offer to do this are either two simplistic, e.g., analog water tank level sensors, or are so complex as to require dedicated personnel, and are simply not maintainable by the family farmers, many of whom are in their 60s and 70s.  Also, the systems are simply too expensive.

The simplicity designed into Serval from the beginning has the potential to change this, by making it possible to create remote monitoring and control networks that do not require any cellular coverage (about 2/3 of Australia has absolutely no cellular coverage at all), or incur the running costs associated with it.  This is part of why we designed Mesh Extenders with "Internet of Things" like inputs and outputs -- although of course we don't need internet access, so it is really more "Mesh of Things" (MoT).  We have already prototyped a simple MeshMS control interface to support this, so that a farmer could just subscribe or unsubscribe to alerts from a sensor by sending a text message to the sensor.  Also, they would be able to do this from anywhere on their properties, instead of being tied down to a centralised control interface.  This last point is not to be underestimated in its impact.

That is, we think we can make something which is 10x cheaper than many of the existing solutions, and 100x simpler -- and that wouldn't need farmers to pay for expensive consultants to fly and drive in from big cities -- they could progressively deploy and maintain it themselves.

Of course, it isn't just Outback Australia that could benefit. Anywhere where the capital expense, availability (or affordability) of communications, or the lack of remote control and monitoring impairs the productivity of farms.

Basically, we hope that our humanitarian technology will be helpful in more than just one situation.  In return, it might just help to create additional markets that can help us to reduce the cost of Mesh Extenders for all users.


  1. A more signifigant use case is high density rural villages in Asia. Every time there is a typhoon (cyclone) the telecommunications and electricity are knocked out. Although the phones are back within a few say with weak signals, the first few days are a serious problem. Also many areas are in telecommunication shadows because they are remote mountainous regions.
    So placing an old android (lots of those there) up a pole, under a tiny solar panel with some supercaps (maybe home made) to pulse charge the phone would be a great base station. Especially with the free phone calling. Villagers love gossiping enough to even keep a bluetooth mesh going

  2. Hello,
    Completely agreed. Disaster response is our primary use-case. Serving remote farms is a secondary value-add opportunity that we see.

  3. Hi Paul, thanks for sharing this. I'm now interested on how this can be implemented by NGOs in disaster prone areas in Asia.

    1. Best bet is to poke me by email, so that we can chat about your use-cases. Let me know if you can't find my email address.


    2. Thanks! I just sent you a note.